
G E N E R A L I Z A T I O N  O F  L .  V.  K A N T O R O V I C H V S  M E T H O D  

A P P L I E D  T O  B O U N D A R Y - V A L U E  P R O B L E M S  O F  

H E A T  C O N D U C T I O N  

A .  A k a e v  a n d  G.  N.  D u l ' n e v  UDC 518.61:536.21 

We give a general izat ion of Kantorovich 's  method of reduction to an ord inary  differential  equa-  
tion [1], as  applied to boundary-value problems of heat  conduction. 

L. V. Kantorovich 's  method of reduction to an ord inary  differential  equation [1] has been applied ex-  
tensively in analyzing boundary-value problems in mathematical  physics  thanks to a number of advantages 
that it pos se s se s  over  o ther  approximate methods.  

Most  of the approximate  methods,  for  example,  the method of R i t z - G a l e r k i n ,  the method of l eas t  
squares ,  the Tref f tz  method,  the method of collocation, etc . ,  r equ i re  an a p r io r i  knowledge of the form of 
the solution and p e r m i t  only in an optimum manner  the determinat ion of the undetermined constants in the 
coefficients  appear ing in the s t ruc tu re  of the given solution. 

We propose  he r e  a general izat ion of Kantorovich 's  method suitable for  boundary-value problems of 
s ta t ionary heat  conduction, which makes it  possible to take into account  the p roper t i es  of the boundary-value 
problem opera to r  with r e s p e c t  to all the unknown var iables  and to obtain much higher  accuracy ,  even in the 
f i r s t  approximation.  

We consider  the s ta t ionary tempera ture  field inside an anisotropic  paral le lepiped with uniformly d i s -  
t r ibuted energy sources  subject  to boundary conditions of the third kind. The t empera tu re  field may  be de -  
scr ibed by the equation 

~, 02t + ~ 02t O~t 
~, Ox ~ y - ~  4-. ~ --Oz 2 + q = 0 (1) 

inside the para l le lepiped Ixl ___ l x, lY] -< ly ,  ]z] --- l z ,  and by the conditions 

[ ] [o o, 1 0 Ot ~ (t - -  te) = O, . ~  -t- (t - -  t~) = 
Oi ~'i i= --I i -~i J i=l i 

on its boundaries ,  t Ie re  i = x, y ,  z. 

We introduce the fol lowing dimensionless  quantities: 

] = i ;  ] = ~, ~1, .~; Bi = atLi" 
t i  

N =  qmL 

As the scaling p a r a m e t e r s  ~m and L m,  we choose,  respec t ive ly ,  the quantities ~z and Lz. Taking 
into account the s y m m e t r y  of the problem and also the notation introduced above, we find it appropr ia te  to 
consider  the following boundary-value  probtem,  equivalent to the initial one: 

O"*N 02N 02N ~ ~ -  § % ~ § - ~  § 1 = 0, (3) 
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r&V[-~ + B I N ]  J=~ =0,  [0~] ]/=o= 0. (4) 

The essence of the method that we propose, as applied to the boundary-value problem (3)-(4), con- 
s is ts  in the following. We average the unknown function N(~, 77, ~) with respect  to two variables,  f i rs t  with 
respect  to ~ and %, for which purpose we apply to the differential equation (3) and the conditions (4) the 
averaging ope~ to r  IT~ ~ : 

I l 

0 o 

0 o 0 

In accord with the boundary conditions (4), 

consequently, 
1 

, .IN(q = 1)d~ 

I.~ [% a~N10r : --%B~ ,f N (~ : b d~ = ~yB~ ~ < N~: > <?g~ > : - - ~ B y %  < N ~ > .  
0 

! 

Here we have introduced the coefficient Oy = .I N(~ ~ 1)d~/<N~ ~>, which characterizes the nonaniformity 
0 

of the temperature field at the section with abscissa ~. The coefficient Cy is a function of ~, but f remphys-  
ical considerations it fotlows that this dependence is a weak one; therefore, we shall henceforth use its 
average value, given by the equation 

I l 

% =~ const -- o o l = "<: N~ (q  = 1) > 
.I < N,~ > d~ N~ 

Proceeding in a completely analogous way, we obtain 

I .  F a 'N  ] = _ B, ,z  < N < > .  

N v  

Combining the results  obtained in applying the operator i n ~ term-wise to the differential equation (4), 
we obtMn an ordinary differential equation in<NT? L>: 

d~ 2 t ,  

p~ = %By% + Bz*~ 

s x 

(5) 

An application of the operator I ~/~ to the boundary conditions (4) for } = 0.1 yields the following con- 
ditions for<NT/g> at the boundary: 

d ~  j =, ~ ~=o= o, (,6) 

Upon integrating Eq. (5) and satisfying the boundary conditions (6), we obtain 

I 
<N~> ---- ~ ,  (7) 

e, xPx 
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cp~= l - - f l ,  chp~____~ Q . = ( I +  p~thp*) -1. 
ch p~ ' B~ 

Thus we now know how the solution depends on the var iable  ~. Fur ther ,  using the ideas in Kantoro-  
vich 's  method [1], we seek  an approximate solution in the form 

= M .<.:N,~r (8) 

To solve the boundary-value problem (3)-(4) is equivalent to minimizing the following functional [1]: 
1 1 I 

o 0 o  

Substituting N in the form (8) into the integral and integrating with respec t  to ~, we obtain the problem 
of minimizing a double integral:  

1 1 

I ~ ~ 
0 O 

1 [ thp~ fl~/thp~ 1 ) ] ,  
ax = I --  2~? x + + (10) 

a , = - ~ \ -  ~ ch; ft., a s = l ' ~ t h p ~ p ~  

The function M, which makes the functional (10) a minimum, is a solution of the boundary-value prob- '  
lem for the equation 

O~M 02M 
% . . . .  0~12 + - ~  ~IM = - -  o~ (11)  

inside the square  0 -< 7? < 1, 0 < ~ < 1 and the boundary conditions 

on the contour. 

Here a I = a2/a l, ~2 = as/al. 
Consequently, the initial boundary-value problem (3)-(4) has been reduced to the two-dimensional 

problem (ii)-(12); we solve the latter by applying the averaging scheme presented above. 
I 

Applying the averaging operator I~, I~ [M] = I Md~ =<M~>, to Eq. (ii) and the conditions (12), we 6 ~ 

obtain an ordinary differential  equation i n<M ~>: 

d~ 2 

4 

Solving Eq. (13) subject  to the boundary conditions 

d <M~> 

we obtain 

2 M G2 

Ell 

] [ d ] + Bll < M ~ >  0, = 0, 
�9 n=, ~ -Jn=o 

(13) 

~ M ~ >  = ~ %, 
%Pu (14) 

% = l - - Q  chpyT1 , ~ y = ( i +  pythpu) -1 
v ch py B u " 

Thus there  remains  the problem of finding how N depends on the var iable  E and, by the same token, 
to obtain a f i r s t  approximation to the solution. 
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We now r e p r e s e n t  M, a s  was  a lso  done in the f i r s t  s tep ,  in the f o r m  of a product:  

A4 = <M~>Q. (15) 

Substituting M into the in tegral  (10) and then in tegra t ing with r e s p e c t  to the va r i ab le  7, we reduce  the 
p rob l em to one of min imiz ing  the s imple  in tegra l  

1 

\ a t ]  ' 
o 

b t  = al ~ 1 - -  2~] u + , (16) %Py ~ -2 \- p. 

Pv ch ~ p ~ ) +  ' - - 2 a ~  .. ' - . p~ 2 pv ' ~.. ,-,,. 

We wr i te  out the Euler  equation for the functional (16)- 

d'Q _ dQ = - %, 

b~ b, ( th Pu ) 

Solving Eq. (17) subjec t  to the boundary conditions 

Fd~ '~'ql o, o, 

whieh guarantee  sa t i s l ae t ion  of the oonditions (4) a t  the boundar ies  [ = 0 and 1, we obtain 

Q ~ -g%, 

~h r,,~ i t~ ~, "~-' (I8) 

Thus the solut ion of the boundary-value problem (3)-(4), in accord with the Eqs. (8), (7), (15), (14), 
and (18), has the fo rm 

_ ( p~lh& ) - '  
~ j  = 1 - -  ~ i  Ch PiJ Q i  = 1 -~- - -  

ch  & Bi 

(19) 

Le t  us study the e r r o r s .  We use  the exact  solution, given in [2], for  the p rob lem cons idered  above,  
sub jec t  to boundary conditions of the f i r s t  kind, and we then c o m p a r e  tile approx ima te  solution obtained he re  
with this exact  so lu t ion  In Eq. (19) we put,  throughout,  Bi = ~,, which co r re sponds  to wri t ing the a p p ro x i -  
m a t e  solution (19} of the p rob lem for  boundary conditions of the f i r s t  kind: 

, ch p, - -  - P ~ -  ch2 P.~ - -P7  + ch-~pPv " (20) 

H e r e  Px, Py, Pz a r e  r e l a t ed  through the fol lowing s y s t e m  of t ranscendenta l  equations: 

. 2 o Lhpu p~ thp~ 

thp., 1 (2,1) 
2 th p, 2 p,: ch= P: 

e ~ p y  = P2 P= __ th p~ + %P* 2 - -  3 ~ t h  p= _F 1 ' 
p~ ch = p= 
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TABLE 1. Relat ive E r r o r s  of Approx imate  Solutions N at  Center  
of Pa ra l l e l ep iped  

�9 
Lz/Ly 0 O, 2 O, 5 I 

L z / L x G K  K R-G GK K R-G GK [ K ]  R-G OK GK ]R-G 

0 
0,2 
0,5 

1 

0,0 
--1,6 
--2,8 
'--3,7 

25,0 
27,6 
25,2 
26, I 

56,6 --1,6 
53,7 --0,8 
36,8 --2 7 
30,4 --5:1 

22.3 
24,4 
23,0 
24,2 

--6',0 1 
50,2 --2,9 
 5,3 __58 
27,8 

36,8 --3,7 
35,3 --5,4 
25,8 --6 7 
22,1 --716 

4,0 30,4 
4,7 26,8 
6 7 22,1 
918 15,6 

. t h p ~ _  1 thp~ 1 

p2=~yp~ p~ ch ~p~ , ~ 2 P. ch 2p~ 
2 3 th py .~ 1 ~- "~p~ th p. 1 2 - - 3 - - - + - -  

P~ ch2Py p~ ch 2 p~ 

F o r  the center  of the para l le lep iped  we have calculated the cor responding  e r r o r s  5N = [(~I--N)/N]100%; 
these  a r e  d isplayed in Tab le  1. 

The s y s t e m  of equations (21) was solved by the method of s imple  i tera t ion,  good convergence  being 
obtained. 

We a lso  p r e s e n t  in Tab le  1 ~ the e r r o r s  incur red  in the solutions obtained, in a f i r s t  approximat ion ,  
us ing the methods of Kantorovich  and R i t z - G a l e r k i n .  

As is evident  f rom Tab le  1, our  method gives much  g r e a t e r  a ccu racy  than the Kantorovich  and Ritz 
- G a l e r k i n  methods ,  these  being the bes t  known of the approx imate  methods .  In addition, the solution b e -  
haves  appropr i a t e ly  in the l imi t ing  t rans i t ion to a p la te ,  i .e . ,  i t  leads to an accu ra t e  solution. Final ly,  in 
con t r a s t  to the indicated c l a s s i ca l  methods ,  in the solution we p ropose  no one coordinate  d i rec t ion  is p r e -  
f e r r ed  ove r  the o the rs .  

More  recen t ly ,  in [3], t h e p r o b l e m  cons idered  above was solved by Ga le rk in ' s  method,  the coordinate  
functions being chosen in a cco rd  with the method of Kantorovich;  the numer ica l  r e su l t s  obtained showed that 
the method p roposed  m a k e s  i t  poss ib le  to inc rease  the p rec i s ion  of Ga le rk in ' s  method.  

Le t  us c o m p a r e  the e r r o r  of the approx imate  solution obtained by our method with that of the f i r s t  
s tage  of the s chem e  p re sen t ed  in [3] for  a point a t  the cen te r  of an i so t ropic  cube where  the l a r g e s t  e r r o r s  
occur .  

F r o m  Tab le  1 we see  that  when L z / L  x = L z / L y  = 1 the e r r o r  of our  approx imate  solution is 6N 
= -7.6%, while that  for  the solution given in [3] is 6N = -21 .3%.  In addition, the method employed in [3] is 
m o r e  labor ious  s ince each s tep involves al l  the opera t ions  requ i red  in both the Kantorovich method and the 
Galerk in  method.  

Thus the modif ied Kantorovich  method,  as  p re sen ted  h e r e ,  is  m o r e  effect ive.  

t 
% 

N 

Nv 
<-N~ ~(~ = 1)> 
Ai 

ai 
q 
Bi 

NOTATION 

is the t e m p e r a t u r e  inside the para l le lep iped;  
is the ambian t  t empe ra tu r e ;  
is the heat ing of the medium;  
is the d imens ion less  o v e r h e a t i n g ;  
is an  app rox ima te  express ion  for  N; 
IS the value of N in the case  of boundary conditions of the f i r s t  kind; 
is the value of N ave raged  over  the va r iab les  ~ and 77 ; 
is the volume ave rage  of N; 
is the s u r f ace  ave r age  of N at  the edge ~ = 1; 
is the t he rm a l  conductivity in the d i rec t ion  of the axis  Oi; 
is the h e a t - t r a n s f e r  coefficients  a t  the edges i = 0, 1; 
is the volume density of the energy  source ;  
is the Blot  number ;  
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L i 

I i 
GK 
K 

R-G 

is the sides of the parallelepiped; 
is the half-sides of the parallelepiped; 
is the solution by the generalized Kantorovieh method; 
is the solution by the Kantorovieh method; 
is the solution by the Ritz-Galerkin method. 
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