GENERALIZATION OF L. V. KANTCROVICH'S METHOD
APPLIED TO BOUNDARY-VALUE PROBLEMS OF
HEAT CONDUCTION

A, Akaev and G. N. Dul'nev UDC 518.61:536.21

We give a generalization of Kantorovich's method of reduction to an ordinary differential equa-
tion [1], as applied to boundary-value problems of heat conduction,

L. V. Kantorovich's method of reduction to an ordinary differential equation [1] has been applied ex-
tensively in analyzing boundary-value problems in mathematical physics thanks to a number of advantages
that it possesses over other approximate methods.

Most of the approximate methods, for example, the method of Ritz—Galerkin, the method of least
squares, the Trefftz method, the method of collocation, etc., require an a priori knowledge of the form of
the solution and permit only in an optimum manner the determination of the undetermined constants in the
coefficients appearing in the structure of the given solution.

We propose here a generalization of Kantorovich's method suitable for boundary-value problems of
stationary heat conduction, which makes it possible to take into account the properties of the boundary-value
problem operator with respect to all the unknown variables and to obtain much higher accuracy, even in the
first approximation, ’

We congider the stationary temperature field inside an anisotropic parallelepiped with uniformly dis-
tributed energy sources subject to boundary conditions of the third kind. The temperature field may be de-
scribed by the equation
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inside the parallelepiped |x| = I, |y| =1y, |z| =5, and by the conditions
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on its boundaries, Herei=x,y, z.
We introduce the following dimensionless quantities:
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As the scaling parameters A, and Ly, we choose, respectively, the quantities A, and L. Taking
into account the symmetry of the problem and also the notation introduced above, we find it appropriate to

congider the following boundary-value problem, equivalent to the initial one:
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The essence of the method that we propose, as applied to the boundary-value problem (3)-(4), con~
sists in the following, We average the unknown function N(¢, 5, ) with respect to two variables, first with
respect to n and ¢, for which purpose we apply to the differential equzmon (3) and the conditions (4) the
averaging operaior I, r:
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In accord with the boundary conditions (4),
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consequently,
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Here we have introduced the coefficient yy = f N(n = 1)d¢ /<Np >, which characterizes the nonuniformity

0
of the temperature field at the section with abscissa ¢. The coefficient y is a function of £, but from phys-
ical considerations it follows that this dependence is a weak one; therefore, we shall henceforth use its

average value, given by the equation
I
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Proceeding in a completely analogous way, we obfain
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Combining the results obtained in applying the operator I, term-wise to the differential equation (4),
we obtain an ordinary differential equation in <Ny >:
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An application of the operator In to the boundary conditions (4) for ¢ = 0.1 yields the following con-
ditions for<<\Nyj > at the boundary:
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Upon integrating Eq. (5) and satisfying the boundary conditions (6), we obtain

' 1
<Nyg> = 6.2 Pz ™M

‘X
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Thus we now know how the solution depends on the variable ¢, Further, using the ideas in Kantoro-
vich's method [1], we seek an approximate solution in the form

N= M<N11C>' (8)

To solve the boundary-value problem (3)-(4) is equivalent to minimizing the following functional [1]:

0= e T () () -

Substituting N in the form (8) into the integral and integrating with respect to £, we obtain the problem
of minimizing a double integral:
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The function M, which makes the functional (10) a minimum, is a solution of the boundary-value prob-
lem for the equation

oM | M
o o + E oM = —o, (11)
inside the square 0 =7 =1, 0 = ¢ =1 and the boundary conditions
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on the contour,

Here oy = ay/ay, 04 = a3/ay.

Consequently, the initial boundary-value problem (3)-(4) has been reduced to the f\vo-dimensional
problem (11)-(12); we solve the latter by applying the averaging scheme presented above.
x .

Applying the averaging operator Iy, I [M]= ( Md¢ =<Mg>, to Eq. (11) and the conditions (12), we
g .
obtain an ordinary differential equation in<<M¢>:

dt <M
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Solving Eq. (13) subject to the boundary conditions

d<M> : d <M¢>
[_—_L—+By<M;>] =0, [»——E—-} =0,
dn n=1 dn n=0
we obtain
<M>= -2 g,
Bypy » (14)
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Thus there remains the problem of finding how N depends on the variable ¢ and, by the same token,
to obtain a first approximation to the solution.
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We now represent M, as was also done in the first step, in the form of a product:

M= <M;>Q. (15)

Substituting M into the integral (10) and then integrating with respect to the variable 7, we reduce the
problem to one of minimizing the simple integral

1
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We write out the Euler equation for the functional (186):
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Solving Eq. (17) subject to the boundary conditions
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which gnarantee satisfaction of the conditions (4) at the boundaries ¢ = 0 and 1, we obtain
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Thus the solution of the boundary-value problem (3)-(4), in accord with the Egs. (8), (7), (15), (14),
and (18), has the form
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Let us study the errors. We use the exact solution, given in [2], for the problem considered above,
subject to boundary conditions of the first kind, and we then compare the approximate solution obtained here
with fhis exact solution. In Eq. (19 we put, throughout, Bi= =, which corresponds to writing the approxi-
mate solution (19} of the problem for boundary conditions of the first kind:
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Here px, Py, Pz are related through the following system of transcendental equations:
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TABLE 1. Relative Errors of Approximate Solutions N at Center

of Parallelepiped
L,/L, 0 0,2 0,5 1
LyL, | GK K |R=G| GK | K !R—G GK 1 K |R=G| oK ‘GK 'R*G
|
, :
0 0,0 125,0|5,6—1,6|223)53,7—2,8| 9,436,8—3,71 4,01{30,4
0,2 |—1,6127,653,7|—0,8}24,4150,2—2,9/11,6|353 ,—5,41| 4,7 |26,8
05 |—2.8|925.21368|—2,7]230{35.3|—5.8(12.8(25.8|-6.7] 6,7 | 22,1
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For the center of the parallelepiped we have calculated the corresponding errors 6N = [(ﬁ—.-N)/N 1100%;
these are displayed in Table 1,

The system of equations (21) was solved by the method of simple iteration, good convergence being
obtained.

We also present in Table 1 the errors incurred in the solutions obtained, in a first approximation,
using the methods of Kantorovich and Ritz—Galerkin.

As is evident from Table 1, our method gives much greater accuracy than the Kantorovich and Ritz
—Galerkin methods, these being the best known of the approximate methods. In addition, the solution be-
haves appropriately in the limiting transition to a plate, i.e., it leads to an accurate solution. Finally, in
contrast to the indicated classical methods, in the solution we propose no one coordinate direction is pre-
ferred over the others,

More recently, in [3], the problem considered above was solved by Galerkin's method, the coordinate
functions being chosen in accord with the method of Kantorovich; the numerical results obtained showed that
the method proposed makes it possible to increase the precision of Galerkin's method.

Let us compare the error of the approximate solution obtained by our method with that of the first
stage of the scheme presented in [3] for a point at the center of an isotropic cube where the largest errors
occur,

From Table 1 we see that when L, /Lx = Ly /pr = 1 the error of our approximate solution is oN
= ~7.6%, while that for the solution given in [3] is 6N = —21.3%. In addition, the method employed in [3] is
more laborious since each step involves all the operations required in both the Kantorovich method and the
Galerkin method,

Thus the modified Kantorovich method, as presented here, is more effective.

NOTATION
t is the temperature inside the parallelepiped;
ta is the ambiant temperature;
3 is the heating of the medium;
N is the dimensionless overheating;"
N is an approximate expression for Nj
NI is the value of N in the case of boundary conditions of the first kind;
(Npg» is the value of N averaged over the variables £ and 75;
Ny is the volume average of N;

<'N§ ¢cln=1p is the surface average of N at the edge n = 1;

M is the thermal conductivity in the direction of the axis Oj;
ag is the heat-transfer coefficients at the edges i =0, 1;

q is the volume density of the energy source;

Bi is the Biot number;
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1,

2.

ig the sides of the parallelepiped;

is the half-sides of the parallelepiped;

is the solution by the generalized Kantorovich method;
is the solution by the Kantorovich method;

is the solution by the Ritz—Galerkin method.
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